3.114 \(\int \frac{x^2 (e+f x)^n}{(a+b x) (c+d x)} \, dx\)

Optimal. Leaf size=158 \[ -\frac{a^2 (e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{b (e+f x)}{b e-a f}\right )}{b (n+1) (b c-a d) (b e-a f)}+\frac{c^2 (e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{d (e+f x)}{d e-c f}\right )}{d (n+1) (b c-a d) (d e-c f)}+\frac{(e+f x)^{n+1}}{b d f (n+1)} \]

[Out]

(e + f*x)^(1 + n)/(b*d*f*(1 + n)) - (a^2*(e + f*x)^(1 + n)*Hypergeometric2F1[1,
1 + n, 2 + n, (b*(e + f*x))/(b*e - a*f)])/(b*(b*c - a*d)*(b*e - a*f)*(1 + n)) +
(c^2*(e + f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, (d*(e + f*x))/(d*e - c
*f)])/(d*(b*c - a*d)*(d*e - c*f)*(1 + n))

_______________________________________________________________________________________

Rubi [A]  time = 0.31919, antiderivative size = 158, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 2, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.08 \[ -\frac{a^2 (e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{b (e+f x)}{b e-a f}\right )}{b (n+1) (b c-a d) (b e-a f)}+\frac{c^2 (e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{d (e+f x)}{d e-c f}\right )}{d (n+1) (b c-a d) (d e-c f)}+\frac{(e+f x)^{n+1}}{b d f (n+1)} \]

Antiderivative was successfully verified.

[In]  Int[(x^2*(e + f*x)^n)/((a + b*x)*(c + d*x)),x]

[Out]

(e + f*x)^(1 + n)/(b*d*f*(1 + n)) - (a^2*(e + f*x)^(1 + n)*Hypergeometric2F1[1,
1 + n, 2 + n, (b*(e + f*x))/(b*e - a*f)])/(b*(b*c - a*d)*(b*e - a*f)*(1 + n)) +
(c^2*(e + f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, (d*(e + f*x))/(d*e - c
*f)])/(d*(b*c - a*d)*(d*e - c*f)*(1 + n))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 48.1351, size = 117, normalized size = 0.74 \[ - \frac{a^{2} \left (e + f x\right )^{n + 1}{{}_{2}F_{1}\left (\begin{matrix} 1, n + 1 \\ n + 2 \end{matrix}\middle |{\frac{b \left (- e - f x\right )}{a f - b e}} \right )}}{b \left (n + 1\right ) \left (a d - b c\right ) \left (a f - b e\right )} + \frac{c^{2} \left (e + f x\right )^{n + 1}{{}_{2}F_{1}\left (\begin{matrix} 1, n + 1 \\ n + 2 \end{matrix}\middle |{\frac{d \left (- e - f x\right )}{c f - d e}} \right )}}{d \left (n + 1\right ) \left (a d - b c\right ) \left (c f - d e\right )} + \frac{\left (e + f x\right )^{n + 1}}{b d f \left (n + 1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**2*(f*x+e)**n/(b*x+a)/(d*x+c),x)

[Out]

-a**2*(e + f*x)**(n + 1)*hyper((1, n + 1), (n + 2,), b*(-e - f*x)/(a*f - b*e))/(
b*(n + 1)*(a*d - b*c)*(a*f - b*e)) + c**2*(e + f*x)**(n + 1)*hyper((1, n + 1), (
n + 2,), d*(-e - f*x)/(c*f - d*e))/(d*(n + 1)*(a*d - b*c)*(c*f - d*e)) + (e + f*
x)**(n + 1)/(b*d*f*(n + 1))

_______________________________________________________________________________________

Mathematica [A]  time = 0.272, size = 153, normalized size = 0.97 \[ \frac{(e+f x)^{n+1} \left (a^2 d f (c f-d e) \, _2F_1\left (1,n+1;n+2;\frac{b (e+f x)}{b e-a f}\right )+(b e-a f) \left (b c^2 f \, _2F_1\left (1,n+1;n+2;\frac{d (e+f x)}{d e-c f}\right )-(b c-a d) (c f-d e)\right )\right )}{b d f (n+1) (b c-a d) (b e-a f) (d e-c f)} \]

Antiderivative was successfully verified.

[In]  Integrate[(x^2*(e + f*x)^n)/((a + b*x)*(c + d*x)),x]

[Out]

((e + f*x)^(1 + n)*(a^2*d*f*(-(d*e) + c*f)*Hypergeometric2F1[1, 1 + n, 2 + n, (b
*(e + f*x))/(b*e - a*f)] + (b*e - a*f)*(-((b*c - a*d)*(-(d*e) + c*f)) + b*c^2*f*
Hypergeometric2F1[1, 1 + n, 2 + n, (d*(e + f*x))/(d*e - c*f)])))/(b*d*(b*c - a*d
)*f*(b*e - a*f)*(d*e - c*f)*(1 + n))

_______________________________________________________________________________________

Maple [F]  time = 0.089, size = 0, normalized size = 0. \[ \int{\frac{{x}^{2} \left ( fx+e \right ) ^{n}}{ \left ( bx+a \right ) \left ( dx+c \right ) }}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^2*(f*x+e)^n/(b*x+a)/(d*x+c),x)

[Out]

int(x^2*(f*x+e)^n/(b*x+a)/(d*x+c),x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (f x + e\right )}^{n} x^{2}}{{\left (b x + a\right )}{\left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x + e)^n*x^2/((b*x + a)*(d*x + c)),x, algorithm="maxima")

[Out]

integrate((f*x + e)^n*x^2/((b*x + a)*(d*x + c)), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{{\left (f x + e\right )}^{n} x^{2}}{b d x^{2} + a c +{\left (b c + a d\right )} x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x + e)^n*x^2/((b*x + a)*(d*x + c)),x, algorithm="fricas")

[Out]

integral((f*x + e)^n*x^2/(b*d*x^2 + a*c + (b*c + a*d)*x), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{2} \left (e + f x\right )^{n}}{\left (a + b x\right ) \left (c + d x\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**2*(f*x+e)**n/(b*x+a)/(d*x+c),x)

[Out]

Integral(x**2*(e + f*x)**n/((a + b*x)*(c + d*x)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (f x + e\right )}^{n} x^{2}}{{\left (b x + a\right )}{\left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x + e)^n*x^2/((b*x + a)*(d*x + c)),x, algorithm="giac")

[Out]

integrate((f*x + e)^n*x^2/((b*x + a)*(d*x + c)), x)